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Fig. 1. The top 100 simulated 2-by-2-by-2 configurations of passive (cyan) and volumetrically-actuating (red) voxels (a) were manufactured in reality (b).

Abstract—The manual design of soft robots and their con-
trollers is notoriously challenging, but it could be augmented—or,
in some cases, entirely replaced—by automated design tools.
Machine learning algorithms can automatically propose, test,
and refine designs in simulation, and the most promising ones
can then be manufactured in reality (sim2real). However, it is
currently not known how to guarantee that behavior generated
in simulation can be preserved when deployed in reality. Al-
though many previous studies have devised training protocols
that facilitate sim2real transfer of control polices, little to no
work has investigated the simulation-reality gap as a function
of morphology. This is due in part to an overall lack of tools
capable of systematically designing and rapidly manufactur-
ing robots. Here we introduce a low cost, open source, and
modular soft robot design and construction kit, and use it to
simulate, fabricate, and measure the simulation-reality gap of
minimally complex yet soft, locomoting machines. We prove
the scalability of this approach by transferring an order of
magnitude more robot designs from simulation to reality than
any other method. The kit and its instructions can be found here:
github.com/skriegman/sim2real4designs

I. INTRODUCTION

The simulation-reality gap1 for rigid-bodied robots is
steadily closing. Computational models of rigid body dy-
namics can now be regularized and tuned so that control
policies optimized in simulation are just as successful when
tested on the physical system [2, 11]. The reality gap for
soft robots, on the other hand, remains uncharted. It could
be wider than the gap for rigid bodies, or not. Soft bodies are
more challenging to accurately simulate, design, and precisely

1Henceforth, “the reality gap”—as coined by Jakobi et al. [12].

control. But, they are also, by definition, more permissive to
simulation inaccuracies, design flaws, and control precision: A
soft gripper or foot will passively conform to complex objects
and terrain, reducing the burden on the simulator to perfectly
capture any single, “true” surface contact geometry.

Quantifying which soft robot designs, policies and behaviors
can be faithfully simulated is critical not only for robotics
[14], but also synthetic approaches to understand functional
plasticity of biological systems during development and regen-
eration [16]. For both domains, testing candidate hypotheses
in reality is expensive, time consuming, and, in some cases,
dangerous. With the recent development of several high-space,
many-body, GPU-accelerated soft body simulators [10, 23],
sim2real for soft robotics and synthetic biology has become
more feasible. However, because these simulators have yet to
be employed to design physical systems, their transferability
is currently unknown.

Previous work has demonstrated methods that promote
successful sim2real transferal of soft object manipulation but
not soft robot behavior. For example, a rigid-bodied robot arm
was successfully trained in simulation to fold towels and drape
pieces of cloth over a hanger [25]. However, the reality gap
was not quantified beyond a binary success rate for each task.
Additionally, the robot’s geometry was fixed and controllers
were then optimized for it, whereas in the work reported here,
the robot’s geometry is part of the solution space.

Hiller and Lipson [8] evolved the overall geometry and
distribution of hard and soft materials in simulation, and
transferred the structures and passive dynamics of various
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cantilever beams. In a separate experiment that included ac-
tuating materials, Hiller and Lipson evolved the morphology
and behavior of soft robots in simulation, and then built
one of the evolved designs physically. However, in order to
transfer the simulated behavior of this one design, the physical
robot needed to be placed in a pressure and vacuum chamber,
whereas the hundreds of soft robot designs built here can be
internally pressurized and actuated.

More recently, Kriegman et al. [15] subjected a simulated
soft robot (composed of elastic voxels) to a series of damage
scenarios that removed increasingly more of the robot’s struc-
ture. In each scenario, the robot was challenged to recover
function (locomotion) by deforming its remnant structure,
without changing its predamage control policy. A pair of
recovery strategies, automatically discovered by an evolution-
ary algorithm in simulation, were transferred to reality (using
silicone “voxels”), but function was not: The physical system
could deform its resting structure as dictated by the recovery
strategy, but it could not locomote, before or after damage.
The physical robot was heavy, had high friction feet, and was
symmetrically actuated in phase, so it just oscillated in place.

To determine the particular challenges and opportunities of
soft robot transferal, it would be useful to greatly scale up
the number of design/policy pairs transferred. To this end,
we present a soft robot design and construction kit based on
the silicone voxel modules used in [15], but miniaturized to
increase stability, simplified to improve reproducibility, and
arbitrarily actuated to permit the transferal of locomotion.

Other modular yet rigid-bodied robot design and construc-
tion kits exist, such as Molecubes [37]. However, our kit is
easier, faster, cheaper, and safer to use. In short, silicone is
molded into hollow voxels, and tubing is attached to supply
low pressure actuation from a hand pump, causing volumetric
changes in one or more of the voxels (Figs. 2 and 3). For
simple behaviors robust to actuation noise, there is no need
to use a highly-pressurized air supply or program microcon-
trollers for open-loop control. There are also no expensive
motors or power supplies.

Here, we employ the kit as an instrument to measure the
reality gap as a function of morphology (Table I). To do
so, we fabricated 108 morphologies (transferal of structure)
and compared the behavior of nine simulated designs to their
silicone equivalents (transferal of behavior). We hope that the
kit’s affordability, safety, speed, and simplicity will generate
increasingly more, and more reproducible, data about the
automated design of increasingly competent soft machines.

II. METHODS

A. The design space.

Following [8] and [15], our kit uses elastic voxels as build-
ing blocks of structure. Here, we considered a 2-by-2-by-2
cartesian lattice workspace, within which voxels were con-
nected together to form a robot. At each x,y,z coordinate,
voxels could either be passive, volumetrically actuated, or
absent, yielding a total of 38 = 6561 different configurations.
We evaluated each configuration in simulation.

TABLE I
SUMMARY OF PUBLISHED SIM2REAL TRANSFERENCE.

Author/citation Year Controllers Morphologies

Miglino et al. [26] 1994 1 1
Jakobi et al. [12] 1995 2 1
Harvey et al. [7] 1997 4 1
Lipson and Pollack [21] 2000 3 3
Bongard et al. [2] 2006 34 2
Hiller and Lipson [8] 2011 1 5
Koos et al. [13] 2012 2 2
Moeckel et al. [27] 2013 1 1
Caluwaerts et al. [3] 2014 2 1
Cully et al. [5] 2015 10 10
Cellucci et al. [4] 2017 1 3
Tobin et al. [36] 2017 1 1
Rusu et al. [34] 2017 1 1
Peng et al. [29] 2018 1 1
Pinto et al. [32] 2018 3 1
Tan et al. [35] 2018 2 1
Golemo et al. [6] 2018 1 1
Matas et al. [25] 2018 3 1
Kwiatkowski and Lipson [17] 2019 2 2
Hwangbo et al. [11] 2019 3 1
Kriegman et al. [15] 2019 1 5
Nachum et al. [28] 2019 3 1
Akkaya et al. [1] 2019 1 1
Rosser et al. [33] 2019 1 16
Kriegman et al. [16] 2020 1 5
The results presented here 2020 1 108

B. The simulation.

We used the soft-body physics engine Voxelyze [9] to
simulate robots composed of actuating and/or passive, elastic
voxels. The simulator models the distance between adjacent
voxels as Euler-Bernoulli beams (critically damped; ζ = 1).
Additionally, a collision detection system monitors the dis-
tance between the voxels on the surface of the robot at each
timestep. If a pair of surface voxels are detected to collide
(intersect), a temporary beam (underdamped; ζ = 0.8) is
constructed between the two until the collision is resolved.

Designs were simulated with a gravitational acceleration of
-9.81 m/s2, and initialized on top of an infinite surface plane
at z = 0. Coulomb friction is applied to voxels in contact with
the surface plane. Voxels were simulated to have 1 cm3 resting
volume (resting beam lengths), with Young’s modulus 107

Pa, Poisson’s ratio 0.35, and coefficients of static and kinetic
friction of 1 and 0.5, respectively. These hyperparameters were
adopted from [15]. For more details about how the physics are
actually modeled, see [9].

Volumetric actuation was implemented by varying the rest
length between voxels, in all three dimensions, when com-
puting the elastic force between them. Volumetric expansion

Fig. 2. A random morphology in the design space shown at atmospheric
(resting; a), positive (expanding; b), and negative (compressing; c) pressure.
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Fig. 3. Manufacturing modular soft robots. Hollow, silicone voxels were
created by partially filling an open-face mold with silicone (a), using a spatula
to spread it along the interior walls (b), and then securing the mold to a 1-axis
rotational molding machine (c). This process allowed excess silicone to drip
out of the mold, while spreading the remaining silicone into a thin uniform
layer. The cured, bottomless voxels were then appropriately arranged and
connected for each x,y slice of the design, and bonded with a shared bottom
layer (d). Finally, tubing was attached (e), and the slices were stacked and
bonded to form the design (f). Video: youtu.be/jbQ2T7jIYRU.

in simulation and reality are both roughly spherical (Fig. 2b),
but compression in reality is more complex and difficult to
simulate: the voxels buckle (Fig. 2c). So volumetric actuation
was here limited to expansion only (+90% rest volume). The
active voxels expand in phase with each other as dictated by
a central pattern generator: a sine wave with frequency 4 Hz
and amplitude 1.9 cm3. When the sine wave is at or below
zero, the active voxels remain at their resting volume (1 cm3).
This produced quasistatic dynamics.

Each design was simulated for 8831 timesteps, with a
stepsize of 0.000453 seconds, resulting in a total simulation
time of 4 seconds. During the first 552 times steps (0.25 sec),
the design was allowed to settle under gravity before actuation
begins, ensuring that movement (if any) is a result of actuation,
rather than passively falling forward. Just before actuation, the
design’s initial center of mass is recorded as (x0, y0, z0). The
active voxels are then actuated for 3.75 sec at 4 Hz, or 15
actuation cycles.

An exhaustive search of all 6561 designs (in batches of
50) took 58 CPU hours (1.8 wall-clock hours) on a single
AMD Ryzen threadripper 1950X 16-core/32-thread processor.
Fitness was taken to be the net displacement (away from the
origin in any direction) of the design’s center of mass, in terms
of euclidean distance in the plane, where the origin is defined
by the x, y components of the design’s initial center of mass
(x0, y0). Fitness is thus defined as:

F =
√

(xt � x0)2 + (yt � y0)2 , (1)

where xt, yt are the final coordinates of the design at the end
of the evaluation period.

C. Reality.

Following Kriegman et al. [15], simulated voxels were
realized physically as pneumatically-actuated, hollow silicone
voxels. The physical robot in [15] was constructed to transfer
symmetrical shape change, so its actuated voxels were dis-
tributed symmetrically and hooked into a single pressure inlet.
Thus, pressure oscillations occurred symmetrically in phase,
and the robot could only pulse in place. Moreover, due to
thin voxel walls relative to overall voxel size, and the tubing
and glue used to bond them together, the robot in [15] could
not fully support its own weight. The robot was lifted off the
ground by placing it on top of a small petri dish, positioned
underneath a segment of entirely passive voxels in the center
of the robot’s ventral surface. This permitted ventral (and more
extreme global) changes in surface curvature, yielding success-
ful sim2real transfer of shape change, but not locomotion.

The construction kit presented here rectifies the weight issue
by miniaturizing the voxels—voxel length was halved (from
3cm to 1.5cm) and the wall thickness remained the same
(1mm), reducing voxel mass from 4.3g to 1.2g (including
tubing but not pneumatic connectors). Further, the inter-voxel
tubing and glue was replaced with holes punched through the
walls of adjacent active voxels in the same x,y slice, before
attaching them with a shared bottom layer (Fig. 3d). Finally,
locomotion is now possible because separate contiguous sec-
tions of voxels in each slice can be arbitrarily actuated in or
out of phase with other sections across the body.

D. The build protocol.

The voxels were manufactured using a single-axis rotational
molding machine.2 First, an open-face mold was fabricated by
interlacing 26 acrylic strips into a flat base, to form a lattice
of cubic concavities, resembling an ice-cube tray (Fig. 3a).
Mold components were laser-cut (VLS2.30, Universal Laser
System) from a flat acrylic sheet with a thickness of 0.025
inch. Next, silicone (Dragon Skin 10 Fast; Smooth-On, Inc.)
was poured into the acrylic mold (Fig. 3a), and a spatula was
used to spread the silicone along the interior walls of each
cavity (Fig. 3b). Colored pigment was added to each batch of
silicone to indicate whether the voxel was active or passive,
simplifying the assembly process. Here we used pink for active
voxels and blue or yellow for passive voxels.

The mold was then flipped upside down and secured to a
1-axis rotational molding machine. The machine was clamped
to a table with binder clips, angled 45◦ relative to horizontal,
and set to rotate 90◦ every 45 seconds (Fig. 3c). This allowed
the silicone to flow and evenly coat the walls of the mold, as
excess silicone dripped out. After the voxels partially cured for
25 minutes at room temperature, the mold was moved to an
incubator, with a temperature of 60◦C for another 20 minutes.
(Without an incubator, the silicone will take 75 minutes to
fully cure at room temperature.)

2The required materials are listed at the end of the manuscript in Table II.
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The above steps were then repeated to add an additional
layer of silicone. Once the second layer cured, the bottomless
voxels were removed from the mold using an X-Acto knife,
and excess silicone around their edges was trimmed.

In the next step, each x,y slice (or dorsal plane) of the
design was assembled by using Sil-Poxy (Smooth-On, Inc.) to
bond adjacent voxels and prevent the slice from shifting. Holes
were then punched between adjacent active voxels so that
contiguous collections of voxels could be actuated together in
phase. Each actuator group needed to contain at least one voxel
on the surface of the design so that it could be controlled by an
external pressure inlet. To create the bottom layer, two 1mm-
thick rulers were attached to an acrylic substrate using double-
sided tape and silicone was poured in the space between them.
Then, the slice of bottomless voxels was flipped, open-side
down, onto this uncured silicone layer (Fig. 3d).

After the bottom layer cured, a thin layer of silicone was
applied with a popsicle stick along the outermost portions of
the interstices of the voxels, bonding adjacent voxels (without
gluing over inter-voxel holes). Then, the slice was cut from
the silicone sheet and a hole was poked into the side of one
exterior voxel from each group of active voxels. Next, a 1/32”
ID silicone tube was inserted into the hole, and glued in place
with Sil-Poxy, applied with a Q-tip (Fig. 3e). The end of this
tube was then connected to a straight pneumatic connector,
which was connected to 1/16” ID silicone tubing.

Occasional imperfections in alignment, silicone thickness,
or inter-voxel hole sizes would result in leaky structures. Leaks
were detected by filling a beaker with water, submerging the
voxels, and inflating them. Bubbles would emanate from leaks,
which were repaired with Sil-Poxy. After repairing any leaks,
the slices were stacked on top of each other and bonded
together using a thin layer of silicone (Fig. 3e). Finally, these
layers were connected pneumatically with assorted pneumatic
connectors, attached to 1/16” ID silicone tubes.

III. RESULTS

To test the effects of morphology on fitness and sim2real
transfer success, it is useful to first visualize the design space.

Fig. 4. The 2D tessellation of 8D
ternary vector space used in Fig. 5.

However, because there are
eight cartesian voxel coordi-
nates in the chosen workspace,
the design space here is eight
dimensional, which is difficult
to draw (let alone conceptu-
alize) without dimensionality
reduction. By nesting the di-
mensions of a search space
onto a single plot (Fig. 4), the
entire space can be visualized
as a 2D heatmap. This strategy
was used by Cully et al. [5] to
neatly visualize the predicted fitness of a very large library
of control policies, as a function of the time a robot’s six
limbs were in contact with the simulated ground plane: 6D

quinary control space was mapped to 2D, by nesting pairs of
dimensions within each other.

Here, the 8D ternary morphology space was reduced to
2D by plotting pairs of dimensions nested within each other
(Fig. 5). The pixel in the exact center of Fig. 5, for instance,
represents the configuration consisting entirely of passive
voxels, and thus cannot locomote (F = 0). Likewise, the
pixel in the top right-hand corner of the heatmap represents
the configuration of all active voxels (Fig. 6d), which actuated
symmetrically in phase, and thus (given its flat ventral surface)
could not locomote across the flat ground plane (F = 0).
Finally, the pixel in the bottom left-hand corner contains no
voxels at all, and thus F = 0.

For locomotion, a good design obviously needs to have
a body, rather than none at all. With open-loop, in-phase
actuation, designs also need to have asymmetrical mass and/or
actuator distributions, or they will not generate any forward
movement. However it is not clear, even for this minimal
design space, exactly which asymmetrical designs will yield
the highest fitness. Yet we can see small clusters and lines
of similarly colored pixels in Fig. 5, representing morpho-
logically similar designs with similar fitness. This suggests
that these configurations and substructures would be relatively
stable under random mutations or errors in fabrication.

Because fitness was measured by displacement in any
direction away from the origin (Eq. 1), there are four con-
figurations—rotations, in the x,y plane, of a single geometry
and distribution of passive and active voxels—with different
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Fig. 5. Simulating modular soft robots. The design space is plotted as
a heatmap, containing one cell for each of the 6561 possible configurations.
Lighter colored cells are fitter designs (Eq. 1). Each design is defined by a
vector of eight ternary values, indicating what kind of voxel (none, passive,
or active) the design contains at the eight lattice points in the 2 × 2 × 2
workspace. The 8D ternary vector is reduced to a 2D heatmap by nesting
pairs of dimensions within each other: four, nested 3 × 3 grids result in a
34 × 34 = 81× 81 overall heatmap.
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Fig. 6. Measuring transferal from simulation to reality. Nine designs (a-i) were evaluated three times each in reality (green-to-blue gradient colored curves
in a'-i'). The behavioral trajectories start at the origin (green) and end at the robot’s final XY destination (blue) (in centimeters). The simulated movement
tracks (yellow-to-pink curves) are superimposed on top of the real ones. The relative volume (normalized by rest volume) was also recorded for each design
at four points during actuation under water (a''-i''). The simulated and real behavior of designs e and f can be observed here: youtu.be/UqjvmkYa9u4.

behaviors (they moved in different directions) but very similar
(if not identical) fitness. There were also some configurations
that, when rotated upward (in the x,z or y,z plane) fell into
the same basic orientation and behavior but with a slightly
different heading. Thus, configurations with similar fitness
(similarly colored pixels) are reflected across multiple, nested
planes of symmetry in Fig. 5. These symmetries can also be
seen in the manufactured robots (Fig. 1b). The uniqueness of
designs (i.e., the size of the search space of morphologies) is
therefore a function of how behavior is measured.

Fig. 6 shows the behavior of nine different designs in simu-
lation and reality. The real robot was actuated 90 times at 6 kPa
pressure on a surface covered with cornstarch (Argo®, ACH
Food Companies, Inc.) to reduce friction, and is compared to
23 simulated actuation cycles. Seven of the nine designs filled
the cubic workspace with passive and active voxels, while the
other two share a more complex geometry: a single-voxel limb
attached to the face of a 2-by-2 plane of voxels (Fig. 6e,f).
In one, the limb is active (Fig. 6e), in the other it is passive
(Fig. 6f). These two designs achieved the two highest fitness
scores (Eq. 1), in both simulation and reality.

By this measure, the reality gap appears small. However,
these simulated designs move very differently from their man-
ufactured equivalents. The simulated morphology in Fig. 6e
pushes off its active limb, whereas in reality the design uses its
limb to pull itself forward, in the opposite direction. Likewise,
the simulated morphology in Fig. 6f pushes off its active 2-
by-2 torso, whereas in reality the design uses its torso to pull
itself forward, in the opposite direction.

Majidi et al. [24] showed that the interfacial shear strength

and coefficient of friction of the surface on which their soft
robot undulated determined the direction of locomotion. They
decomposed friction into load- and area controlled terms for
point and surface contacts, respectively. On slippery surfaces
with low interfacial shear resistance, the robot anchored about
the point contact (expanded section) for locomotion and pulled
its surface contact (passive segment). However, on surfaces
with high interfacial shear resistance, the robot anchored about
the surface contact and pulled the point contact toward it.
We hypothesize that such differences in tribological properties
could have caused our designs to move in opposite directions
in simulation and reality.

In an attempt to test this hypothesis and reduce the
simulation-reality discrepancies that cause the virtual con-
figurations in Fig. 6 to move differently than their physical
realizations, we performed a grid search of various simulation
hyperparameters, including the coefficients of static and ki-
netic friction. However, we could not identify a pair of friction
coefficients that resulted in correct movement heading for all
nine of the behaving designs (Fig. 6a'-i'). This could be due to
either low precision or low accuracy of the model. To isolate
and test the former possibility, we increased the resolution
of the simulated surface contact geometry by modeling each
silicone voxel as a 3-by-3-by-3 group of simulated “subvoxels”
(Fig. 7), and then re-ran the parameter sweep. Still, we could
not find friction settings in which the simulated movement
direction matched the ground truth across all designs simulta-
neously. This suggests that the accuracy of Coulomb friction
model may be insufficient to model this type of movement.

The Coulomb approximation assumes that friction is simply
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Fig. 7. A higher resolution model in which each silicone voxel is approx-
imated by a 3-by-3-by-3 group of simulated subvoxels: a high-res voxel.
The design in a and b are high-res instantiations of those in Figs. 6e and
6f, respectively. Spherical volumetric expansion in a high-res voxel (c) was
approximated by increasing the rest length between the centermost subvoxel
and the subvoxels at center of each face (green subvoxels in d).

proportional to the vertical component N of the reaction force,
and independent of the contact area. However, friction is also
a function of the surface area and interfacial shear strength
τ , a fixed constant which is mostly governed by adhesion
or mechanical interlocking between the contacting surfaces.
A better model would thus consider friction as a function
of both the normal force and the interfacial shear strength.
However, before fundamentally changing the simulator, we
plan to evaluate designs in noisy environments with imperfect
control over actuation characteristics to avoid ascribing high
fitness to designs that exploited unrealistic properties of the
simulation [12]. Additionally, data from reality could be used
to automatically tune the geometry and resolution of the sim-
ulated finite elements [2], or to predict the kinds of behaviors
that are more likely to successfully transfer [13], and which
should be tested next [2]. Concurrently, we are investigating
additional physical surfaces with varied tribological properties
in an attempt to match reality to simulation.

IV. DISCUSSION

In this paper, we introduced a low cost, open source
platform for designing and rapidly building soft robots, and
used it to transfer 108 different morphologies (voxels on a
cartesian grid) from simulation to reality. We then measured
the reality gap as function of the robot’s design (geometry and
distribution of passive and actuating voxels) by tracking the
behavior of nine transferred morphologies. Under one measure
(net displacement) the reality gap appeared rather small, but
under another (velocity) the gap was much wider, likely due
to oversimplified tribological contacts between the simulated
ground plane and the robot’s ventral surface [24].

Although most of the transferred designs (99 out of the
108) were not actuated in reality, they nevertheless served an
important function: they were sketches. Sketches let us think
more clearly about the behavior or properties (e.g., stability)

of a design without investing the additional time and resources
required to fully build and examine the design itself. Sketches,
in other words, greatly increase the breadth of exploration in
design space. All sim2real methods embrace this utility of
simplifying sketches. Simulation, after all, is also a sketch.

However, there is a tacit assumption in robotics about Depth
First. A typical sim2real experiment begins by sending a
complicated robot design across the reality gap, and then
endeavors to learn transferable policies that control the mor-
phology in all its complexity. But this is not how most design
proceeds. An architect first roughly sketches a structure, say,
a bridge, on the back of a napkin. A diversity of designs
are then generated, tweaked, discarded or provisionally ac-
cepted—at this shallow level of napkin realism—before more
detailed blueprints are drawn under more stringent constraints.
Blueprints, too, undergo this breadthwise evolution, before the
most promising are realized physically, first as scale models
(built from matchsticks and glue instead of concrete and steel),
then, finally, at full scale and cost. This incrementally weeds
out nontransferable features and adds mechanical complexity
only when and where it is necessary to do so, rather than
globally from the outset.

The assumption that the reality gap can be bridged by policy
search alone, with a single robot design, is groundless. The
desired behavior of a robot is typically much more complicated
than that of architecture. This suggests the necessity of more,
not less, sketches. Soft robots are more complicated still. This
makes their automated design that much more appealing, but
implies the need for even greater breadth of sketches, at more
intermediate levels of realism. Though not every experiment
will need to start from a blank slate. Instead, designers
(whether human or AI) could leverage prior knowledge to
reject truly awful designs before sketching them in the first
place. The designs transferred here add to a growing database
(prior probabilities) about which and how well different soft
robot designs and behaviors can be realized physically. Our
construction kit has the potential to further increase this data
by lowering not only cost and build times but also the barrier
of entry to soft robotics for non-experts.

The generality of such data beyond robotics is currently
not known, but it could also have important implications for
developmental biology and regenerative medicine. The bio-
electric and genetic control policies that orchestrate adaptive
remodeling of growth and form in organisms are not yet
understood, but could, in future, be reverse-engineered by
machine learning, and then controlled externally to induce
regeneration in otherwise non-regenerative organisms (such
as adult humans), or to reprogram otherwise unbounded can-
cerous growth toward functional organogenesis [18, 19, 20,
22, 30, 31]. However, such advances in regenerative medicine
and synthetic morphology will only be possible if hypotheses
generated in simulation are transferable and testable in reality.
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TABLE II
THE CONSTRUCTION KIT FOR MAKING FIFTY 2-BY-2-BY-2 DESIGNS.

No. Part Cost Notes

1 Dragon Skin 10 FAST, 2 lbs kit (Smooth-On, Inc.) $32.21 Created voxel bodies and connected x,y slices.
2 Sil-Poxy, 3 ounce tube (Smooth-On, Inc.) $30.72 Secured tubing and repaired air leaks in six-sided voxels.
3 1/32” ID silicone tubing, 52 ft $34.32 50A shore hardness; connected voxels to actuation system.
4 1/16” pneumatic plastic connectors, 200 pieces $100 Straight and T shaped.
5 1/16” ID silicone tubing, 65.6 ft $62.98 50A shore hardness; part of actuation system.
6 60 mL Plastic Syringe (McMaster–Carr, Inc.) $3.13 Used to hand-actuate voxels while checking for leaks.

7 1000 mL beaker (PYREX™ VISTA™ Griffin, Fisher
Scientific International, Inc.) $14 Voxels were inflated in this beaker filled with water to detect leaks.

8 Hole punch 1/4 rectangle (Fiskars) $10.35 Created holes between voxels within a slice so they actuated as a unit.
9 X-Acto Knife (McMaster–Carr, Inc.) $4.11 Cut bottomless voxels out of acrylic mold, and trim the edges.
10 100 mL mixing cups (VWR international), pack of 100 $66 Where silicone was mixed.
11 Spatula (McMaster–Carr, Inc.) $7.50 Spread the Dragon Skin on the edges of the acrylic mold.
12 2 Scrap acrylic sheets, 12”×12”×1/8” $10.58 Collected scrap Dragon Skin; the surface where voxel bottom were created.
13 2-1mm thick 30 cm metal rulers $6.99 Used to set a thickness for sixth voxel side (bottom layer).
14 Double-sided tape $4.99 Adhered the rulers to a scrap acrylic sheet.
15 Simple 30 cm metal ruler $3.99 Spread a thin sheet of Dragon Skin onto scrap acrylic sheet for sixth side.
16 Popsicle stick (11.3 cm × 1 cm), box of 1000 $13.49 Applied thin layer of silicone to bond adjacent voxels and x,y slices.
17 Cotton-tipped applicators, 6 inch, box of 1000 $8.99 (McKesson Corp.) Used to spread Sil-Poxy.
18 Disposable Gloves (Halyard Inc.), box of 100 $8.95 Wore when handling uncured silicone.
19 2 Acrylic sheets, 12”×12”×1/8” (McMaster–Carr, Inc.) $18.30 Used to manufacture the open-face acrylic mold with laser-cut.
20 41 mm binder clips, pack of 12 $7.99 Held the acrylic mold onto the rotational molding machine.

The rotational molding machine:

21 Acrylic sheet, 12”×12”×1/4” (McMaster–Carr, Inc.) $17.34 Supports for rotational machine; 2× triangular plates, 3× motor mount.
22 Acrylic sheet, 12”×12”×1/4” (McMaster–Carr, Inc.) $17.34 Mounting plate; holes were cut to minimize weight.
23 Pololu 4756 DC rotational motor $39.95 Used for rotational molding machine.
24 Pololu 1999 mounting hum $7.95 Used to mount rotational molding machine.
25 Arduino Uno Microcontroller $22 Controlled rotation timing and degree.
25 Arduino Motor Shield $19.95 Controlled rotation motor.
26 12 V Power Supply $10.42 Powers the Arduino; 12mm×2.1×5.5mm barrel jack.
27 8020 T-Slotted Solid 1” beams (McMaster-Carr, Inc.) $12.31 2×10 cm, 2×40 cm; supports for rotational molding machine.
28 8020 screws and T-nuts $7.92 Connected 8020 beams.
29 “M3×10” screws $1.24 Used to mount rotational molding machine.
30 Irwin QuickGrip 12”×2.75” Clamp $15.99 Held rotational molding machine to table.

Grand total: $622
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haus, Jonathan Bruce, Benjamin Schrauwen, and Vytas Sun-
Spiral. Design and control of compliant tensegrity robots
through simulation and hardware validation. Journal of the
royal society interface, 11(98):20140520, 2014. URL https:
//doi.org/10.1098/rsif.2014.0520.

[4] Daniel Cellucci, Robert MacCurdy, Hod Lipson, and Sebastian
Risi. 1d printing of recyclable robots. IEEE Robotics and
Automation Letters, 2(4):1964–1971, 2017. URL https://doi.
org/10.1109/LRA.2017.2716418.

[5] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste
Mouret. Robots that can adapt like animals. Nature, 521:503–
507, 2015. URL https://doi.org/10.1038/nature14422.

[6] Florian Golemo, Adrien Ali Taiga, Aaron Courville, and Pierre-
Yves Oudeyer. Sim-to-real transfer with neural-augmented

robot simulation. In Proceedings of The 2nd Conference
on Robot Learning, volume 87 of Proceedings of Machine
Learning Research, pages 817–828. PMLR, 2018. URL http:
//proceedings.mlr.press/v87/golemo18a.html.

[7] I. Harvey, P. Husbands, D. Cliff, A. Thompson, and N. Jakobi.
Evolutionary robotics: the sussex approach. Robotics and
Autonomous Systems, 20(2):205 – 224, 1997. ISSN 0921-8890.
URL https://doi.org/10.1016/S0921-8890(96)00067-X.

[8] Jonathan Hiller and Hod Lipson. Automatic design and man-
ufacture of soft robots. IEEE Transactions on Robotics, 28
(2):457–466, 2011. URL https://doi.org/10.1109/TRO.2011.
2172702.

[9] Jonathan Hiller and Hod Lipson. Dynamic simulation of soft
multimaterial 3D-printed objects. Soft Robotics, 1(1):88–101,
2014. URL https://doi.org/10.1089/soro.2013.0010.

[10] Daniel Holden, Bang Chi Duong, Sayantan Datta, and Derek
Nowrouzezahrai. Subspace neural physics: fast data-driven
interactive simulation. In Proceedings of the 18th annual ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
page 6. ACM, 2019. URL https://doi.org/10.1145/3309486.
3340245.

[11] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bel-
licoso, Vassilios Tsounis, Vladlen Koltun, and Marco Hutter.
Learning agile and dynamic motor skills for legged robots.
Science Robotics, 4(26), 2019. URL https://doi.org/10.1126/

365

Authorized licensed use limited to: Yale University. Downloaded on July 07,2020 at 19:33:53 UTC from IEEE Xplore.  Restrictions apply. 



scirobotics.aau5872.
[12] Nick Jakobi, Phil Husbands, and Inman Harvey. Noise and

the reality gap: The use of simulation in evolutionary robotics.
In European Conference on Artificial Life, pages 704–720.
Springer, 1995. URL https://doi.org/10.1007/3-540-59496-5
337.

[13] Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux.
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